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S T A B I L I T Y  O F  A S O L I D  I N  A V O R T E X  F L O W  O F  I D E A L  L I Q U I D  

V. A. Vladimirov and K. I. Win UDC 532.5 

The problem of  movement of a solid in an ideal liquid is a classical section of hydrodynamics [1, 2]. The stability of 

steady-state body movements in potential flows has been studied previously in [1-5]. In the present work the two-dimensional 

problem is considered for stability of  a solid in a steady-state vortex flow of  ideal incompressible liquid. A preservation 

functional is constructed which has a critical point in solving the steady-state problem of flow round a body. Adequate stability 

conditions are obtained by the Arnold method [6] for linear approximation. The general result is used for studying flow stability 

with circular flow lines in the case when an inner cylinder may move under the action of  the forces of  pressure from the 
direction of the liquid. 

1. Statement of  the Problem. The two-dimensional problem of movement of a solid in an ideal incompressible uniform 

liquid is considered. Movement of  the body occurs in (m + l)-connected region ~" totally tidied with liquid. Boundary a~" of 

region ~" consists of  m boundaries 3r i (i = 1 . . . . .  m) of singly-connected regions z i and outer boundary 3~ o. At instant of time 
t the body occupies the region Zb(t) within region r. 

On a Cartesian coordinate system x, y the equation of liquid motion has the form 

u , + ( u - V )  u = - ( 1 / o ) V p - V r  d i v u = 0 ,  t o , + ( u - V )  t o = O .  (1.1) 

Here u - (u, v), p, oo -- v x - Uy are fields of velocity, pressure, and vorticity; p is liquid density; <I, is potential of external 
forces operating on the liquid. 

Body movement is described by the equations 

mr162 --- rnR~ = - f pnidS O,t,n (R, 't') 
ORi ' 

b,~ b 

f 0~  (R. •) I0~ - I~b - - z. [(r - R) x n I pdS o~ 
(1.2) 

where z is unit vector in the direction of axis z; m is body mass; I is body moment of inertia; V is body forward movement 

velocity; fib is angular velocity of rotation of the body around axis z; R is radius vector of the body center of mass; so is an 

angular variable prescribing body orientation; <I, b is potential of external forces operating on the body. 

At boundaries igr k (k = 0 . . . . .  m) and Or b the normal condition of no flow is set: 

u .n = {V + f~[z x (r - R)]}-n at  Ox,, (1.3) 

u" n = 0 a t  0xk, k = 0 . . . . .  m. 

Here n are external normals to a r  b and ark; r is radius vector of a point on the body surface a r  b. 

Integrals are retained in the solutions of  problems (1.1)-(1.3) 

} E =  p + p ~  dx + ~ mR, Ri + ~ I ~  + dP~ (R, ~o); 
�9 - t  b - 

(1.4) 
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c = f F (~) d~, 
, r  b 

(1.5) 

where F(r is an arbitrary function; summing is carried out by repeating vector indices. Integral (1.4) is the total energy of the 
body-liquid system, and (1.5) is a consequence of retaining vorticity in each liquid particle. In addition, in view of the Kelvin 

theorem there is also retention of velocity circulation with respect to closed curves a~" k, a~'b: 

Fk = f u ' odS  (k = O . . . . .  m), Fb = f u ' a  dS (1.6) 
r r162 

(a is tangential vector to the curve for which integration is performed). 

Then the problem is considered for the stability of accurate solution of problem (1.1)-(1.3) corresponding to a steady- 
state regime of flow round a body. On the coordinate system connected with the body (the origin coincides with the body center 
of mass) this solution has the form 

R, = R,  = ~ = O, u, = U, (x) in ~ - ~ o .  

The velocity field U(x) is the solution of the flow problem: 

1 
( U - V ) U = - ~ V P + V ~ ,  d ivU=O in x - ' % ,  

U-n = 0  at. Ox~ and O'tk (k = O . . . . .  m). 

(1.7) 

(1.8) 

Forces acting on the body from the direction of the liquid and the moment of forces are balanced by an external force and 
moment: 

0 ~  b 
= - f  n,PdS; (1.9) 

~162 = - f  z. (r x n) PdS. o~ 

A preservation functional is composed from integrals (1.4)-(1.6) 

(1.10) 

I =  P + dp + F (oa) dx + ~ + ~ ~ + dp~ + A~Fk + BF~ 
k=O 

(1.11) 

(B, A k (k = 0 . . . . .  m) are arbitrary constants). 
It will be shown below that with appropriate selection of function F(~o) and constants B, Ak solution (1.7) is a steady- 

state point of functional I. 
2. Extremum Conditions. For the first variation of functional (1.11) taken in solving (1.7) the following representation 

is correct: 

~ I  = J" O {U + rot [F' (f2)z]}-5udx + m V - 5 V  + 1f2~5f2~ + 

§ + as - f 0 z ( r •  + aS 

+ [Ao + pF'(no) l y ($u.o) dS + ~ [Ak -- oF'(f2,) ] y (•u.o) dS + 
~)zO k=l Or k 

+ [B - oF' (~)l  f (~u-a) as. 
Ott~ 

(2.1) 
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Here 6r = fiR + 6,p (z x r) is infinitely small displacement of point r at the body surface with variation; fiR is body 

displacement as a whole; 6~p is body rotation around axis z; t] is vorticity of the main flow; t~ k •- fi on O~'k; t] -- t~ on Oz b. 

It can be seen from (2.1) that ~I = 0 if the following conditions are fulfilled: 

Ak = 9F' (~k), k =  1 . . . . .  m ;  Ao = - 9 F' (~o); B = p F ' ( ~ ) ;  

�9 ~, = V, = 0, + = q2~ = 0; 

U = - rot [F' (f2) zl; 

(2.2a) 

(2.2b) 

(2.2c) 

9ni + ~ dS; (2.2d) 

o~ (2.2e) 

We select constants B, A k (k = 0 . . . . .  m) so that condition (2.2a) is fulfilled. Equality (2.2b) is always fulffiled in steady-state 

solution (1.7). ff the function of  point 'It of the main flow is determined 

then (2.2c) means that in solution (1.7) 

By using (2.3) Eqs. (1.8) may be rewritten in the form 

Taking account of  (2.4) it follows that 

~ + - -  

U (x) = - rot (~z), (2.3) 

qJ = F' (f2). (2.4) 

- f2vqJ = - V (P/9  + ep + U,U,/2). 

uiui P dH d2F 
2 = -- --O + H (f2) + const, ~-~ = f~ --d~2 �9 (2.5) 

By substituting (2.5) in Eqs. (2.2d) and (2.2e) it is possible to see that they coincide with conditions for body equilibrium (1.9) 

and (1.10). 
Thus, it is shown that in the set of functions u(x, 0, R(t), V(0, ~'(0, [~b(0 which satisfy the nonflow condition (1.3) 

solutions (1.7) of  problem (1.8) are stationary points of functional (1.11). (Here it is assumed that the required properties for 

the smoothness of  function u(x, t) are fulfilled.) Thereby a generalized Arnold result [6] is given for the case of  presence of 

a solid in the liquid. 

In order to explain the nature of the critical point of functional I we work out its second variation at this point: 

y [  ~ ] ~21 = p (~u)2 + ~ (~ ' )2  ax + m ( ~ ) 2  + t (~+)2 _ 

�9 t - x  b 

- f p (~r.n) [2U-bu + (~r.V) a l d S -  

0 ,  b 

- f o ~  (~R.~) a d S  + ~ q , ~ q ~ .  

(2.6) 

Here ~u i, &o, ~R i, ~ are variations of  the corresponding values; 6r m ~R + ~o [z x r]; 6o a -- (6R 1, 5R 2, 6~o); G -- UiUi/2 + 
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3. Linearized Problem Integrals. Equations of motion linearized in solution (1.7) have the form 

Du + ( u . V )  U = - 

D ~ +  ( u - V ) ~  = 0  
O 

div u = O, D - - ~ + U . V  
in x -  xv; (3.1) 

f d~ b mJ~, = - 9 [(P + r .VP)  nl + tpPo,] dS + ~o R,; (3.2) 
a~ b 

I~ = - f  p [z'(ro x n ) ] (p  + r.VP) dS + 
O~t, 
O~o-'~ % (3.3) 

a ~  

where u i, ~o, p, R i, ~r are infinitely small disturbances of the corresponding values; r =-- R + r [z x ro]; in (3.2) and (3.3) 
integration is performed with respect to the undisturbed surface of the body cgr b. 

In linearizing problems with an unknown moving boundary on Euler coordinates difficulties arise connected with 

'removal' of  boundary conditions from the disturbed surface to the undisturbed surface. Therefore, here it is convenient to use 

the linearization method given in [7, 8]. Disturbed flow X(a, t) (a is Lagrangian coordinate) is broken down into two parts 

X (a, t) = x (a, t) + ~ (x (a, t), t) (3.4) 

Ix(a, t) is undisturbed flow]. In view of the continuity condition for flow the linearized boundary condition at 0% is as follows: 
(X(a, t) - x(a, 0 ) ' n  = r .n .  Taking account of (3.4) it takes the form 

(x ,  t ) .  n = r . n .  (3 .5 )  

The connection of Euler disturbances of velocity u(x, t) with Lagrangian displacements of  liquid particles ~(x, t) is given by 

the equation [7, 8] 

D~ = u + (~.V) U. (3.6) 

The boundary condition for the velocity field follows from (3.5) and (3.6) 

I 
u.n = D (r.n) + ( r . n ) ~ n Q  at  dxo ( ~  ~- UiU~). (3.7) 

At stationary boundaries Or k (k = 0 . . . . .  m) linearized boundary conditions have the normal form 

u - n  = 0 a t  O ~ .  (3 .8 )  

It is well known [6, 7] that there is preservation of the second variation of (2.6) in view of linearized problems (3.1)- 
(3.3), (3.7), (3.8), which may be confa'med by direct calculations. Variations du, &o, dR, d~ imply infinitely small disturbances 
of u, o~, R, ~, which satisfy Eqs. (3.1)-(3.3). In accordance with this in (2.6) we make the following redesignations: du -~ u, 

&o --, r r --- r o, dr --- r ,  &li ~ ch- Equation (2.6) is written as 

E l - 7  b21= P +a-f i -T]  d x + T  + 7  - 
t - ~  b 

e [ ol e - p (r.n) U-u + ~ (r.V) a s -  ~tp(R.olGdS+7ooo,~oo----- ~ 
~tb  tITb 

q~q,. 
(3.9) 

When there is positive definiteness of  E t as a quadratic form of u, R, 1~ 9, ~ from the equality E 1 = const stability 
of solution (1.7) emerges for linear approximation. In fact, if deviations of disturbed flow from undisturbed integral E 1 are 

87 



measured, then there is stability in the Lyapunov determination: for any number e > 0 another number ~ > 0 is found so that 

only E~(0) < ~, and then for all t > 0 the condition E~(0 < e is fulfilled. Here it is sufficiem to take/~ = e. 

Energy integral (3.9) is only determined when in the whole of the flow region z - z b there is fulfillment of the condition 

~'  - (dfl/de/) ~ 0. For the important class of flows with constant vorticity Q' m 0 Eq. (3.9) does not make sense. In this case 

of the linear problem integrals a reduction factor may be obtained for the class of disturbances. For this equations in vortex 

disturbance (3.1) using (3.6) are reduced to the form 

D (to + ~ .V f2)  = 0. (3.10) 

It follows from (3.10) that if in the initial instant of time it is chosen that 

~, = - ~  . v f ~  = - ~ ,  ( E . v w ) ,  (3.11) 

then equality (3.11) will be fulfilled with all t. Equation (3.11) means limitation of the class of  disturbances to the so-called 

'equal vortex' class [9]. For these disturbances the magnitude of the vortex is constant in each liquid particle and the field for 

the vortex only changes as a result of movement of these particles. Integral Ez (3.9) for a narrower class of  disturbances remains 

correct only if the integral for region r - r b in accordance with (3.11) which is in expression (3.9) takes the form 

f [ ~  ' f~' .v,~,) ~] P + 7 (I[ dt. (3.12) 

With Q' = 0 it follows from (3.11) that w = 0 and the energy integral E 1 taking account of  (3.12) is reduced to the form 

f Uil~ i n! R2 ] " 2 1 02r 
El = p - '~  dx + -~ __ + -~ tp + i OqoiOqo-----~k q, qk - -  

t-z b 

: ['o]: - p ( r .n )  U - u + 7 ( r - V  ) d S -  ~ , p ( l ~ . a )  G d S .  

~m~b ~t  b 

(3.13) 

In accordance with this ~ntegral E 1 (3.13) is preserved in view of the linear problem if the field for disturbance velocity is 

considered potential. 

4. Sufficient Conditions for Stability. As has been shown above, sufficient conditions for stability of solution (1.7) 

coincide with conditions for energy integral (3.9) as a quadratic form of u i, ~., R i, ~,, ~ having fixed sign. In order to reduce 

E~ (3.9) to a form convenient for studying its property of having a fixed sign, in region ~" - 7" b a subsidiary vector field or(x) 

is introduced. It is assumed that the properties of, function smoothness for o~(x) required subsequently are fulfilled. It is possible 

to show that for any field or(x) such that r = 0 at a~', ot = cx~r at Or b, the following equality is correct: 

f {[2e~,,z,Ojetk - z-rot r 1 u,u,, + 2tau:t  A dx + f r {(u.o) 2 - (u.n) 2} dS = O. 
-- x b b~ b 

(4.1) 

By combining expressions (3.9) and (4.1) and separating perfect squares in integrals for region r - r b and for boundary 

#~'b the expression (3.1) may be converted to the form 

' : (  E t = K * +  7 pct u . a - - - - f f - r . n  d S + W ,  
~b 

2w = ( m ~  - F,,) R,,~ - 2G~R,R~ + (a~, + A~) R,R~ + ff - D) (0 2 + (4.2) 
+ (c + C) ~ - 2H,p(p - 2 L k , ~  + 2N, k:p  + 2M~R/p + 2 (b~ - B3 R:p. 

Here 

88 

21(* = p XikUjUk + ~'~ to + ~ U" a. dx; 
- t - -~ b 

df~ 
ki, - (1 - z.rot a)  ~, + 2ei~,z,O~tx, - ~ a~aj,; 



a~, - OR~ ORk ' b~ = OR~ O~ ' c - -  oN,2 ; 

Fu, =-" f petn~n, dS; Q~, - f oc~n,l'I, dS; l-Ik - (o .V) OktI/; 
~b  ~n  

-- --if-rtin, + aI'Iil'], dS; 

f{ , o ,  o . }  B, ~- p - a n , A  - ( r o . a )  n, + 'T" + 7 (z- [to x VG]) - ---~-;O,G as; 

C - f p {ro'O (z" lro x VG]) - aA2 - UkU" } (ro'o) 2 dS; A - (o-V)  (ro'U); 

D - f pa  (r0.o) 2 dS; H =- f pct(r0.o) AdS; L -- f pct (to.o) n, dS; 
O~tb r f)tb 

N , -  f pctAn, dS; M , -  f pc~(ro.o) l'I, dS. 
r)x b ,3~ 

Energy integral (4.2) is determined positively if simultaneously the following conditions are fulfilled: 

(4.3) d'--~ �9 0 in �9 -- xb; 

k,,uiu, �9 0 in x - xb; (4.4) 

ct �9 0 a t  axe; (4.5) 

W �9 0. (4.6) 

Condition (4.3) coincides with the sufficient condition for Arnold stability for plane flows of an ideal incompressible 
liquid in a fixed region [6]. Let it be fulfilled. By using arbitrary u we select it so that conditions (4.4) and (4.5) are fulfilled. 
This is always possible by choosing a quite small field for ~. Now the condition for E 1 having a fixed sign coincides with 
conditions for a quadratic form of W from ~., Ri, ,p, ,p having fixed sign. It follows from the form of W (4.2) that with quite 

small u (such that max{Fll,  F22 } < m, D < I) it is possible to find such aik, bi, c for which the quadratic form of W will be 

determined positively. Thus, the following is correct: if for basic solution (1.7) the Arnold stability condition is fulfilled 

anp 
d"-~ �9 0 i n  "~---~o, 

then there will always exist such a potential Cb of external forces which operate on the body that solution (1.7) will be stable 

in the sense of  preserving energy integral E t (4.2). This means that external forces which operate on the body may stabilize its 

movement in a vortex flow satisfying the Arnold stability condition. 
It is possible to formulate clearly energy conditions which should satisfy the potential of  external forces Cb sufficient 

for positive determination of the energy integral. In order to avoid cumbersome computations we dwell on the particular case 
when the body is a round cylinder of  radius r r Then generalized coordinate e is cyclic and those disturbances which are turnings 

of the body cannot be considered. Energy integral E 1 (3.9) takes the form 

E~= p +~-~ d'~- p(R.n) U . u +  R-V d S +  

m . �9 l 

+ "~ RiRi + ~ aikRiRk. 

(4.7) 
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We introduce a polar coordinate system (r, 0). Let (U, V) and (u, v) be the corresponding components of  the velocity 
field for the basic flow and disturbances. We assume that ot = r~tt = const at Or b. Then similar to (4.2) the expression for the 
energy integral may be written in the form 

2x 2 

E, = h-" + p d a  v - ---: R . .  a e  + w ,  
r io t  

0 

2 W  = (m~,, - F,k) k ,kk  - 20~,R,Rk + (a,k + A,,) R,Rk. 

(4.8) 

Since for a round cylinder n = (cos 0, sin 0), o = ( - s in  0, cos 0), then it is possible to obtain 

2x 

'S 
0 

2~ 

0 
2a 2a 

" 'S ':S Ai, ~ - - i  c2o (niV) Oe (n,V) dO, A;  = - -  V n~n, dO. 
a r l  ~ r  

0 0 

Consequently, 

(, , ) 2 W  = ( m  - a r t  ) k 2 - 2 a r t ~ , k , R . ,  + rt -~ a,k + A~ -- if;A[, -- ~ A~ RiR, .  (4.9) 

By separating the perfect square in (4.9) we have 

2 

( (~ ~kRk)+2rtw~Ri]? ,k ,  2 W = ( m - a ~ t )  k~ m-at~ 

1 1 -2 
2w~ -= ~ a~k + A ~ - c~A~ - g A?~ ,,, ~ r 

- 5 F 

(4.10) 

It follows from (4.10) that the quadratic form of W is determined positively if the following conditions are fulf'tlled 

~; m/r t ;  (4.11) 

w~RiRk ;~ O. ( 4 . 1 2 )  

Thus, by selecting & so that (4.11) is fulfilled it is then possible for any solution in the form of  (1.7) to check the 

correctness of  inequality (4.12). If  it is not fulfilled then there is stability in the sense of  preserving integral (4.8). 

5. Stability of  Flow between Cylinders. We consider flow with circular current lines between cylinders. The inner 

cylinder is assumed to be unsecured. Its movement is described by equations of motion for a solid. Let r 1 and r 2 be cylinder 
inner and outer radii. The main solution (1.7) is thus: 

I~0 = R ,  = O, V = V (r),  Q = V'  (r) + V ( r ) / r .  (5.1) 

Energy integral (4.7) may be written in the form 

2x 

E1 = p + -~ dx + ~- - p ~ (R-n) V V '  rt de .  (5.2) 

~-~b 0 

I t  is assumed that external forces are absent: ~ -- ~b = O. 
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Since the main solution (5.1) is invariant with respect to rotations around axis z, then in view of linearized equations 

of  motion (3.1)-(3.3) and boundary conditions (3.7) and (3.8) integral M is also preserved, which is a second variation of the 
pulse for the body- l iqu id  system: 

2~ 

:'": I ] M =  p ~ r - T  dx - p(R-n)  v + ~ ( R . n )  f2 ~ dO + m z . ( R  x l~) 

~-~b 0 

(5.3) 

(preservation of M may be demonstrated by direct calculations). From E 1 and M a preservation functional E = E 1 + XM (X 
is an arbitrary constant) is composed. If we select )~ = -V(r l ) / r  1, then I~ takes the form 

12 .] [ - - -  -~.- + 
�9 -,o - - + g ( r ) - i -  d x + p r ~ X  2 1 P~'lJ 

I t |  - -  ]2 n l  
+ ~  [k~ ~.R: + ~ ' [ / ' r  kR~]2, 

(5.4) 

where g(r) - (V(r) + Xr)/9'(r); R1, R 2 are components of vector R on Cartesian coordinate system x, y. 
Integral (5.4) is determined positively and consequently there is stability if the following conditions are fulfilled 

V (r) - rV (rl)/rl 
g (r) = f~' (r) ;~ 0, rl ~ r ~ r2; 

m ( p~ .  

(5.5) 

(5.6) 

For flow with a constant vortex (9(r) = const), which corresponds to the velocity profile 

V ( r )  = Ar  + B / r ,  (5 .7)  

a sufficient condition for stability in the class of potential disturbances is reduced to inequality (5.6). 
Another sufficient condition for stability for flow (5.7) is obtained directly from conditions (4.11) and (4.12). It is 

possible to show that for (5.7) the sufficient condition of stability [in the sense of preserving integral (4.8)] consists of 
simultaneous fulfillment of the following inequalities: 

- 1 ~ r 1 ~ r  X' ~ 1; 

1 
r lV  (rl) V '  (rl) ~ - y (a)  (V (rl)) 2, v (a)  - a + ~ + 

(5.8) 

a p ~ ,  (5.9) m / F -  0- ' Ix----" 

where a m r l& (z • VX).  If  X(x) is selected in the form 

I" 2 ~ 1 .  

~'  (r) = 1.2 - 1.1 (5.10) 

then from (5.8) and (5.9) taking account of (5.7) it follows that 

r l  

y + l  B 
- v--z-i" ~ a1.~ ~ - 1. 

( 5 . 1 1 )  

(5.12) 

It follows from (4.11), (5.11), and (5.12) that by selecting the parameter 

< rain {• inlet}, 
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we obtain condition (5.12) at the velocity profile (5.7) which is a sufficient condition for stability. It should be noted that 
sufficient conditions for stability (5.6) and (5.12) do not coincide. Inequality (5.12) is separated for a narrow class of stable 
flows of the form (5.7), but in the absence of (5.6) it is correct for the case when body mass is greater than the mass of liquid 
displaced by it, i.e., when condition (5.6) is upset. 

The authors thank B. A. Lugovtsov, R. M. Garipov, and S. M. Shugrina for useful discussion. 
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